Expanding the Role of Fan-in and FO-WLP: Technology and Infrastructure Developments

E. Jan Vardaman, President and Founder, TechSearch International

TRACK INNOVATION
IDENTIFY TRENDS
ANALYZE GROWTH
INFLUENCE DECISIONS

RELEVANT, ACCURATE, TIMELY
Mobile Products Continue to Get Thinner

Source: ASE.
iPhone Trends: Increasing Number of WLPs

Shown to scale

Source: ASE and TechSearch International, Inc., adapted from TPSS.
Drivers for WLP

• Major applications for WLP......
 – Smartphones (highest volume application)
 – Digital cameras and camcorders
 – Laptops and tablets
 – Medical
 – Automotive
 – Wearable electronics such as watch

• WLP meets system packaging needs
 – Small form factor
 – Need for low profile packages
 – Lower cost (less material)

• Form Factor is Key
 – Low profile
 – Limited space on PCB
Conventional WLP Applications

- Conventional WLPs for many device types (analog, digital, sensor, discrete)
 - Power management IC (PMIC)
 - Audio CODEC
 - RF
 - IPD, ESD protection, filter
 - LED driver
 - Electronic compass
 - Controller
 - MOSFET
 - CMOS image sensors
 - Ambient light sensors
 - EEPROM

- Conventional WLPs trends
 - Highest I/O count 309 (Fujitsu power management IC)
 - Largest body size Qualcomm PMIC 6.5 mm x 6.5 mm x 0.71 mm, 0.4mm pitch
 - Increasing number of 0.4mm pitch parts, some 0.35mm pitch
 - Fine pitch parts need high-density PCB to route signals

Source: ASE.
Fan-In WLP Market Projections

- Conventional fan-in WLP demand
- Growth driven by greater adoption in smartphones, tablets, and wearable electronics
- CAGR of almost 9% from 2014 to 2019
Drivers for FO-WLP

- Smaller form factor, lower profile package: similar to conventional WLP in profile (can be ≤0.4 mm)
- Thinner than flip chip package (no substrate)
 - Can enable a low-profile PoP solution as large as 15mm x 15mm body
- Support increased I/O density
- Allows use of WLP with advanced semiconductor technology nodes with die shrinks
 - With increased I/O and smaller die can’t “fan-in” using conventional WLP
- Split die package or multi-die package/SiP
 - Multiple die in package possible
 - Die fabricated from different technology nodes can be assembled in a single package
 - Can integrate passives
- Excellent electrical and thermal performance
- Excellent high temperature warpage performance
- Improved board-level reliability
- Fine L/S (10/10µm), roadmaps for (≤5/5µm)
Multi-Die/SiP FO-WLP Solution

- 2 Layer-RDL Interconnection
- 2 Active Die + 10 Passives 0201 SMD

Source: NANIUM
FO-WLP for Automotive Application Drivers

- Growth of active safety systems for automotive applications
- FO-WLP being adopted for mmWave applications
 - Parking slot measurement (SRR)
 - Blind spot detection (SRR)
 - Adaptive cruise control (LRR 77GHz)
 - Emergency breaking
 - Lane correction
- Volumetric shrink of current and future systems (40 to 90%)
- Increased functionality with heterogeneous integration
- Improved in system performance
 - Low parasitics
 - Low inductance
- Improved board level reliability

Continent announced it is integrating Freescale’s 77GHz radar technology into its next generation short- and mid-range automotive radar modules.
Application Processor Packaging Trends

- Thinner package and smaller footprint
 - Today 1.0mm height requirement
 - Future ≤0.8 mm
- 3D IC with TSV provides the ultimate in package height reduction, but continues to be pushed out
- Silicon interposers too expensive for many mobile products
- PoP in high-end smartphones
 - Option 1: Continue with FC on thin substrate
 - Option 2: Embedded AP in bottom laminate substrate (MCP)
 - Option 3: Fan-out WLP with application processor as bottom package
 - Option 4: Some new format (SWIFT, NTI, etc.)
- FO-WLP AP in bottom PoP
 - Low profile
 - High routing density
 - Handle high power
 - System integration with competitive cost

Today’s PoP (1.0mm)

FO-WLP as Bottom PoP (<0.8mm)
• Early products included baseband processor (Infineon Wireless Division)
• Device types include RF such as Bluetooth, NFC, GPS, PMIC, automotive radar, future application processors
FO-WLP Merchant Suppliers Status

- Amkor Technology redeploying FO-WLP with new 300mm line (eWLB) in K4 plant
- ADL Engineering 200mm pilot line in Taiwan
- ASE license for Infineon’s eWLB with 300mm in Taiwan, also offers “chip last” panel version
- Deca Technologies (300mm “panel” format)
- FCI/Fujikura (embedded WLP in flex circuit)
- NANIUM (300mm wafer) license for Infineon’s eWLB
- NEPES (300mm line in Korea) based on Freescale’s RCP process
- PTI (R&D on panel)
- SPIL (300mm wafer)
- STATS ChipPAC (300mm wafer) will be purchased by JCET, license for Infineon’s eWLB
- TSMC (300mm wafer InFO WLP)
- New suppliers TBD
Industry Needs Same Package Choice from Suppliers

- **Success of McDonald’s Hamburgers**
 - Looks the same
 - Taste the same
 - No matter which geographic region

- **Packages need to**
 - Look the same
 - Have the same reliability
 - No matter which company/country location
Exceptions to the McDonald’s Hamburger Rule

• When a foundry....
 – Provides its foundry customer a packaging solution
 – Enables faster time to market with silicon and package delivery
 – Provides a warranty accepted by end customer

• When a company is vertically integrated....
 – From silicon design and fabrication to IC package and assembly to end product

• If same function is accepted
 – Different process
 – Alternative accepted with same function, performance, and reliability
Alternatives to Reconstituted Wafer FO-WLP

- Amkor’s SWIFT
- ASE’s chip last
- Conventional flip chip
- SPIL’s NTI
- Molded Interconnect Substrate (MIS)
- Embedded die solution/panel processing

Source: Amkor.

Source: Infineon.

Source: ASE.

Source: TDK.

Source: SPIL.
Amkor’s SWIFT™

- **Target Markets**
 - Mobile, Networking
 - BB, AP, Logic + Memory, Deconstructed SoC
- **Utilizes Existing Bump and Assembly Capability**
 - Polymer based
 - Flexible
 - Multi-die and large die capability
 - Large package body capability
 - Advanced die integration
 - Stepper capability down to 2um line/space
 - Die shift / orthogonal rotation elimination
 - Down to 30um in-line copper pillar pitch
 - 3D capability
 - Package stack capability using Cu pillars or TMV
ASE’s Chip’s Last Package

- **Uses low-cost coreless substrate**
 - Fine pitch capable (15 L/S today, 12µm L/S development)
 - Manufactured in double panel format
 - Assembled in strip format
 - Multi-die and passives possible
 - Can be bottom PoP

- **Thin package (<375 µm)**

- **High current and thermal handling capabilities**
 - Due to thicker Cu (15-20 µm)

- **Uses existing FC infrastructure**
 - Flip chip with Cu pillar mounted on coreless substrate
 - Mass reflow and molded underfill

Source: ASE.
Fan Out Chip Last Panel vs Wafer Utilization

Panel Size: 510x410 mm (209, 100mm²) X 2
Strip Size: 240x76.2 mm (X2L)
Strip Array: 34x13 => 442 ea

Wafer size : 300mm (70,686mm²)

6:1 Area

Source: ASE.
Molded Interconnect Substrate

- MIS-BGA offered by JCET (owns APS) and SPIL
- Versions offered by other OSATs

Source: JCET.
Is Panel Processing a Viable Alternative?

• **What size panel is feasible?**
• **Assembly of die on panel**
 - Die placement accuracy may be more difficult to control with large panels
 - Large area bonders may be required
 - Throughput (time required to pick and place die in panel)
 - How is placement accuracy impacted by tape and mold compound?
 - What level of inspection is required to verify accuracy? What speed?
• **Dielectric dispense methods?**
 - How to control run-out at edge?
 - Need inspection for even coating?
• **Molding materials and process?**
• **Panel warpage**
 - Warpage increases with panel size
 - Impact of materials (mold compound and filler)
 - What type of inspection is required and how will it work with warped panels
• **Via formation method (minimum via diameter)**
 - Via alignment
• **Metal plating**
 - Metal to dielectric interface (what inspection requirements?)
 - How to sputter seed layer?
• **Interconnect reliability? Inspection for broken metal traces etc.**
• **Singulation method?**
• **Solder ball placement and inspection method?**
Additional Considerations for Panel Processing

- **Warpage (impacts assembly/manufacturability)**
 - Heterogeneous materials and non-symmetric structures can cause bowing
 - Polymer materials with adapted CTE and modulus, plus low shrink

- **Accuracy/resolution (miniaturization)**
 - Improved optical recognition systems for placement equipment
 - Imaging with high depth of focus and high resolution

- **Yield (impacts cost)**
 - Suited materials and components
 - Optimized processes
 - Production experience

Source: Fraunhofer IZM.
Conclusions

- **Mobile products require low profile packages**
 - Fan-in WLP
 - FO-WLP

- **Demand for lower cost solutions drives adoption of new package designs and formats**
 - Round panels?
 - New chip last packages?
 - MIS on modified leadframe?
 - Large area processing?

- **Many package choices**
 - Few standard options except conventional WLP
 - Growing number of companies selecting FO-WLP with reconstituted wafer
 - Alternatives will continue to be developed
Thank you!

TechSearch International, Inc.
4801 Spicewood Springs Road, Suite 150
Austin, Texas 78759 USA
+1.512.372.8887
tsi@techsearchinc.com