Plasma Dicing: More Die – Stronger Die
Prepared for Semicon Taiwan

Richard Barnett
Etch Product Manager
7th September 2016
Contents

■ FOWLP & Dicing
■ Plasma Dicing
■ Bosch Process (DRIE)
■ Benefits of DRIE for Dicing
■ Integration Schemes & Challenges
■ Die Strength Advantages
■ Die Density Gains
■ Thin Wafer Capability
■ Cost of Ownership Performance
■ Summary
Use of FOWLP is all about flexible integration and lowering cost.
FOWLP & Dicing

Different Process – Same End Product

- Wafer dicing
- Wafer reconstitution
- Molding
- RDL → Singulation
- Bumped Die
- Flip chip bonding
- Molding → Singulation
- FO WLP
- WL – Chip First
- FO CLP
- PL – Chip Last

Plenty of cost saving opportunities with Yield & Throughput improvements before you get to FO
Especially with Plasma Dicing
Plasma Dicing – A new paradigm

- Dicing is not new
 - Using plasma etching for dicing is new
 - Step change in back-end process flows

- Back-end and front-end are not so different
 - Same key objectives;
 - Yield Up and Cost Down

- Disruptive technologies require time to establish themselves
 - “Bringing back-end into the front-end”
 - Discover and overcome roadblocks
 - Gain acceptance & show capability

- The etch technology is available now
 - Integration challenges to be overcome
The “Bosch” Process
- Si etch process
- Repeating loops
 - Polymer dep
 - Polymer removal
 - Isotropic Si etch

There are fundamental considerations for this approach
- Define the Si to be etched
- Provide a compatible etch structure
- Manage test structures and alignment marks – metals & dielectrics
Wafers & Frames

DBG – Dice Before Grind

- ‘Standard’ equipment
- Partial F/S DRIE
- Invert wafer & frame mount
- Singulate during B/S grinding

DAG – Dice After Grind (On Carrier)

- ‘Standard’ equipment
- Temporarily bond to wafer sized carrier
- Singulate during DRIE
- Remount die onto tape/frame for pick & place

DAG – Dice After Grind (On Frame)

- Frame based equipment
- Singulate during DRIE
- Drop-in replacement for conventional dicing

Frame
- Plastic or SS
- 296mm OD (6” & 8”); 400mm OD (12”)

Tape
- Adhesive + Carrier Film
- PVC, PO, PET

Standard Substrates

Standard Equipment
Consistent, damage free singulation

- No chips, no cracks
- Same sidewall behaviour…wafer-to-wafer
- Repeatable etch performance….ensured with EPD
- Cost of inspection/cost of quality – potential to reduce/eliminate inspections

MEMS 2014 reference
Benefits of DRIE for Dicing
Yield & Cost Benefits

- No Damage
 - Bosch etch creates clean scallops
 - Active cooling to prevent heating
 - No vibrations, debris, water
 - Increased die strength
 - Yield improvement
 - Potential to eliminate inspections
 - Able to cope with thinner wafers (≤50μm)

- Die Density
 - Narrow lanes (<10μm) increase usable Si area
 - Non-orthogonal layouts can be used
 - Crack stop areas can be eliminated

- Throughput
 - Parallel process
 - High Si etch rates
 - Option to use cluster platforms
Integration Considerations

- Die shape, size, area, packing
- Dicing lane width
- Removal of non-Si structures
- Protection of device structures

Layout for Plasma Dicing

Manage Process Flow

Additional Mask Layers, or “Self” Masking

Lane definition by LASER or Blade

Compatible & Defined Dicing Lane
Lane definition by LASER & Blade

- Quality of lane definition not assured
 - Clearing non-Si material from lanes
 - Edges not as “sharp” as photolithography
 - Tuned DRIE can manage this case
 - “Cleans up” top CD of feature

- What if non-Si cannot be removed?
 - E.g. LASER cannot ablate metals
 - OK, if material does not “bridge” lane
 - Etch will simply “go around” the obstruction

- This is most suited to larger die
 - Less affected by t’put of blade/LASER
 - No risk to die strength !!
Metals cannot be etched during plasma dicing

- “Al, Au, Ti, Cu etch with a tape & frame?”
- Ideal case - No dielectric or metals in lanes
- Solder bumps & bondpands are OK

Backside metal can be an advantage

- Clamp to metal
- Access higher t’put process windows

But, how are die separated?

- An additional step is required

Multiple backside metal (BSM) separation options available

- Tape selection is important here
- Dependant upon separation method;
 - Cleaving
 - Stretching
 - Blade/LASER
Other Critical Considerations

■ Tape Choice
 ■ Majority of tapes can be used
 ■ Some perform better than others
 ■ Depends on subsequent steps/process windows
 ■ Reaction of film & adhesive to plasma conditions
 ■ Ensuring no impact on pick/place performance

■ Test Pads
 ■ Lane width reduction to accommodate more die
 ■ Test pads require minimum width for probe heads
 ■ Below minimum width; test pads have to move
 ■ Use a “die” location
 ■ On-die test structures
Die strength is a key attribute, and becoming more critical

Why?

“Harsh” environments are all around us … Especially for IoT !!!
Die strength is a key parameter

- Plasma dicing gives approx 2x gain in die strength
 - Compared to conventional DAG techniques
 - And 20% gain versus Stealth for DBG
- Large notch significantly reduces die strength, even c/w blade
 - <50% of die strength from controlled plasma dicing
 - Notch control is critical for successful plasma dicing
Importance of Process Control

- Etching to tape is similar to SOI
 - Insulating stop layer – in this case a tape
 - Notching die underside at Si/tape interface

- Notching can be prevented
 - Requires EPD & management of bias RF
 - Claritas to enhance OES detection
 - Pulsed bias RF to dissipate charge
Impact of Notch Control
Ability to protect die strength

- Use of Claritas plus pulsed bias gives best notch performance
 - Early detection; of tape minimised and focussed overetch
 - Protect tape and die sidewall from excessive overetch

- More potential impact for smaller die (~1mm² or less)
 - Where notch to die size ratio can be significant

- Large Notch
 - 8~10x scallop size

- Notch ~ Scallops
- Notching <3μm

With EPD
With Overetch control

Without EPD
Without Overetch control

© 2016 SPTS Technologies
This presentation and the information contained within it is the property of SPTS Technologies and is confidential. Any duplication, disclosure, distribution, dissemination or copying of this presentation or its contents or use for any purpose other than that for which it is supplied is strictly prohibited, without the prior written consent of SPTS Technologies.
Die Density & Die Outline

- Reduction in dicing lane width frees up real estate
 - Typically gives biggest gains for smaller die; <1mm²
- Die area can be reduced with removal of crack stop regions
 - Die area reduction of up to 40% may be possible
 - Allowing further consolidation of die layout

![Die Per Wafer vs Dicing Lane Width](image)

© 2016 SPTS Technologies
Die Density & Die Outline

- Reduction in dicing lane width frees up real estate
 - Typically gives biggest gains for smaller die; <1mm²
- Die area can be reduced with removal of crack stop regions
 - Die area reduction of up to 40% may be possible
 - Allowing further consolidation of die layout
Trends towards thinner wafers

- Device performance, stacking, etc are pushing thinner wafer trends
 - 100-200µm ➔ <50µm

- Conventional dicing techniques begin to pose many difficulties here
 - Throughput restrictions to minimise damage
 - Vibration
 - Heat affected zones
 - Etc

- Plasma dicing is able to cope easily with ultra-thin wafers
 - Higher throughputs as wafer thickness reduces
 - No damage, no heat effects, etc

© 2016 SPTS Technologies

This presentation and the information contained within it is the property of SPTS Technologies and is confidential. Any duplication, disclosure, distribution, dissemination or copying of this presentation or its contents or use for any purpose other than that for which it is supplied is strictly prohibited, without the prior written consent of SPTS Technologies.
Examples of plasma dicing

- Range of integration schemes shown
 - Lithography, LASER definition of lanes, etc
- High dynamic wafer throughputs achieved
 - 3wph for thicker wafers up to 9wph for thinner wafers
Throughput

- Plasma has a distinct advantage as die sizes decrease
 - Number (& distance) of dicing lanes increases
 - And as wafer thickness reduces

![Graph showing Plasma has a distinct advantage as die sizes decrease](image1)

![Graph showing Blade & LASER increase cycle time as die size reduces](image2)

![Graph showing Higher etch rates for thinner wafers](image3)
CoO Comparison

- All things being equal…..
 - On face value, LASER has the higher throughput
 - With lower capital costs than plasma, but what about CoO?

![Graph showing Throughput (wph) for Blade, LASER, and Plasma with assumptions provided.](image)
CoO Comparison

- Take into account...
 - Yield
 - Increased die count per wafer
 - Improved die quality

Utilising benefits of Plasma generates significant CoO advantages over conventional techniques.
Plasma dicing has rapidly become an accepted technique
- Although still in early days of the adoption cycle

Hardware and processes available now
- Based on existing production proven process solutions

Key issue for plasma dicing is integration
- Metals & Dielectrics
- Patterning

Plasma is proven to deliver improved die strength
- Versus blade, LASER and Stealth dicing
- No damage
- Claritas and Bias Pulse Control shown to be critical for DAG
- Minimising notching at tape interface giving higher die strength

Significant CoO benefits moving to Plasma
- Higher yields
- Higher throughputs as wafers get thinner & die get smaller
- Plasma has a major cost per die advantage compared to other techniques