Protec Laser assisted Bonder
PLA-100 Introduction

SH LEE
Why Laser Assisted Bonder?
Introduction

Absorption Laser energy
Transited the vibrational energy
The vibrational energy
Become heating source
The means Heating source is
Welding point
Thermocouple temperature Test

Rapid ramp up test

- **Measurement tools**
 Thermo-couple: ST-50
 NR-500 Wave Logger

- **Parameter**
 Input Power: 80W
 Die peak temperature: 260°C

- **Test Device**
 Die Size about 10x10mm
 Die Thickness 150um
 CSP Type

- **Test result**
 Ramp up time to peak temp(260°C): 300ms

![Graph showing test results with a 300ms ramp up time to 260°C peak temperature]
Laser Assisted bonding (LAB) Applications

- LAB experience (tested by customer)
 1. Chip Size: 5x5mm ~ 35x35mm
 2. Chip Thickness: 50um ~ 780um
 3. Substrate Type: Strip & Single type substrate / Ceramic substrate / 200mm, 300mm wafer
 4. Product: Single & MCM FC bonding, chip & SMD(SiP) POP, Chip on wafer (CW) 2.5D
 5. Process: Single Bonding, Global (Multiple) Bonding
PLA-100A Machine Overview

- IR Camera
- Optic Head
- Trolley system
- Laser Source
- 3 Stage Indexer
- XY Gantry System
- 3 Stage Unloader system
- XY Gantry System
- Trolley system
PLA-100A Specification

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UPH</td>
<td>30,000ea (Global shot Dependent on chip size & number, emission time 700msec) * Process dependent</td>
</tr>
<tr>
<td>2</td>
<td>Gantry Resolution</td>
<td>0.5µm</td>
</tr>
<tr>
<td>3</td>
<td>Flatness of Stage Bond Stage</td>
<td>Bond Stage ≤ 25um</td>
</tr>
<tr>
<td>4</td>
<td>Stage Temp</td>
<td>Max 150°C(±5°C)</td>
</tr>
<tr>
<td>5</td>
<td>Laser Power</td>
<td>2KW (100W ~ 5Kw Optional)</td>
</tr>
<tr>
<td>6</td>
<td>Beam Size</td>
<td>4~60mm (choose Optic for fix size)</td>
</tr>
<tr>
<td>7</td>
<td>Boat size (substrate) Wafer</td>
<td>L : 100330mm / W : 62330mm / T : 0.3~4.5mm Up to 12 inch wafer</td>
</tr>
<tr>
<td>8</td>
<td>Monitoring system</td>
<td>Laser power / Real time IR Camera</td>
</tr>
<tr>
<td>9</td>
<td>Vision system</td>
<td>5.3um Resolution, 14.4x10.8mm FOV, coaxial & ring light</td>
</tr>
</tbody>
</table>
PLA-100 Machine main module

Optic System (Homogenizer)
- Variable beam size: 4mm ~ 60mm (choice optic)
- Motorized X, Y Axis, beam size control by software
- Active water cooling system
- Protect lens contamination (air curtain)

Head Unit
- Theta ±5°, Resolution 0.00000455°/pulse
- Z Stroke 50mm, Resolution 0.015um/pulse
- Tilt adjustable
PLA-100 Machine main module

Laser system

- Power 2KW (optional 100W ~5Kw)
- Cooling method : Water
- Wavelength : NIR
- Mode of operation : CW

Vision System

- Camera Resolution : 1280x1024 pixel
- Pixel pitch : 5.3um
- Frame rate : 60Hz
- Telocentric lens : 14.4x10.8mm FOV
- Lighting : Red
PLA-100 Machine main module

Heated work stage & Conveyor

- Z Stroke 10mm, Up & down
- Z Position Programmable
- Tilt Adjustable
- Motorized Width Adjust
- Conveyor speed control (Step-Motor)
- Max Stage Temp : 150 °C (±5 °C)
PLA-100 Machine main module

IR Camera

- Camera Resolution: 384x288 pixel
- Pixel Pitch: 25um
- Measurement Range: -20~650 °C
- Real Time bonding temperature profile by IR camera
- Reading Frequency: 50msec
PLA-100 Machine main module

Trolley System

• Using Trolley Easy setup
• 1 Trolley Cover 10 MC
• Z Height Adjustable
PLA-100 Machine Strong Point via Mass reflow system

Machine size

1,600mm
2,000mm
2,000mm
4~5m

1,600mm
PLA-100 Machine Strong Point via Mass reflow system

Easy of Use

- User Friendly interface
- Data Storage : SSD/HDD
- SECS/GEM
- SMEMA interface
Appendix Laser Density Test

Optic Density

- Plan to develop auto size checking & homogeneity check
Appendix Laser Density Test

Optic Density

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25.821 mm</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.433</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>31.285 mm</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.828</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35.807 mm</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.066</td>
<td>-0.193</td>
</tr>
</tbody>
</table>
Appendix

- Quoted by AMKOR 2015 Taiwan Semicon show DongSu Ryu

PCB warpage

- 60mm BD & 400um Core
 - 40~50um PCB warpage on Die area @ 225°C HT

Typical Max Warpage at 225 deg C
Appendix

- Quoted by AMKOR 2015 Taiwan Semicon show DongSu Ryu

Die warpage

- 12x12mm size / 100um thickness
 - 50um die warpage (Smile type) @ 217°C HT
Appendix

Quoted by AMKOR 2015 Taiwan Semicon show DongSu Ryu

MR vs. LAB – FCBGA Coreless sub

- **Coreless FCBGA W/ LAB**
 - 52.5mm BD, 19.7x19.2mm Die, Eutectic, 160um pitch, Coreless 12+1 PCB
 - LAB : Good interconnection & stable joint height

<table>
<thead>
<tr>
<th>Position</th>
<th>Left</th>
<th>Center</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Reflow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix
- Quoted by AMKOR 2015 Taiwan Semicon show DongSu Ryu

- Low thermal stress
 - Limited die / PCB extension as applying optimized energy for interconnection
Appendix

- Quoted by AMKOR 2015 Taiwan Semicon show DongSu Ryu

• Purpose
 - To confirm Electrical performance & Reliability test after LAB

• Information & Result

<table>
<thead>
<tr>
<th>PKG</th>
<th>BD size</th>
<th>Die size</th>
<th>Pitch</th>
<th>Si Node</th>
<th>Electrical test test</th>
<th>Reliability test test</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcCSP</td>
<td>15x15mm m</td>
<td>12x12mm m</td>
<td>55/110um m</td>
<td>28nm</td>
<td>182/182 (100%)</td>
<td>MRT(L3) TCBx1500 HTS1500hrs</td>
</tr>
<tr>
<td>fcCSP</td>
<td>15x15mm m</td>
<td>10x10mm m</td>
<td>130um</td>
<td>16nm</td>
<td>40/40 (100%)</td>
<td>MRT(L3) TCBx1000 HTS1000hrs</td>
</tr>
</tbody>
</table>
Appendix Video
Thank you very much